2021 Consumer Confidence Report Data TWO RIVERS WATERWORKS, PWS ID: 43604363

Este informe contiene información importante acerca de su agua potable. Haga que alguien lo traduzca para usted, o hable con alguien que lo entienda.

Dlaim ntawv tshaabzu nuav muaj lug tseemceeb heev nyob rua huv kws has txug cov dlej mej haus. Kuas ib tug paab txhais rua koj, los nrug ib tug kws paub lug thaam.

Water System Information

If you would like to know more about the information contained in this report, please contact Andrew Sukowaty at 920-793-5558.

Opportunity for input on decisions affecting your water quality

Two Rivers City Hall, 1717 E. Park St., Two Rivers, WI 54241 1st & 3rd Mondays, Monthly at 6:00pm.

Health Information

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's safe drinking water hotline (800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune systems disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the Environmental Protection Agency's safe drinking water hotline (800-426-4791).

Source(s) of Water

Source ID	Source	Depth (in feet)	Waterbody Name	Status
1	Surface Water		LAKE MICHIGAN	Active

To obtain a summary of the source water assessment please contact, Andrew Sukowaty at 920-793-5558.

Educational Information

The sources of drinking water, both tap water and bottled water, include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally- occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which shall provide the same protection for public health.

Definitions

Term	Definition
AL	Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
HAL	Health Advisory Level: The concentration of a contaminant which, if exceeded, poses a health risk and may require a system to post a public notice.
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine, if possible, why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine, if possible, why an E. coli MCL violation has occurred or why total coliform bacteria have been found in our water system, or both, on multiple occasions.
MCL	Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
MCLG	Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MFL	million fibers per liter
MRDL	Maximum residual disinfectant level: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MRDLG	Maximum residual disinfectant level goal: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
mrem/year	millirems per year (a measure of radiation absorbed by the body)
NTU	Nephelometric Turbidity Units
pCi/l	picocuries per liter (a measure of radioactivity)
ppm	parts per million, or milligrams per liter (mg/l)
ppb	parts per billion, or micrograms per liter (ug/l)

Term	Definition
ppt	parts per trillion, or nanograms per liter
ppq	parts per quadrillion, or picograms per liter
SMCL	Secondary drinking water standards or Secondary Maximum Contaminant Levels for contaminants that affect taste, odor, or appearance of the drinking water. The SMCLs do not represent health standards.
TCR	Total Coliform Rule
TT	Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.

Detected Contaminants

Your water was tested for many contaminants last year. We are allowed to monitor for some contaminants less frequently than once a year. The following tables list only those contaminants which were detected in your water. If a contaminant was detected last year, it will appear in the following tables without a sample date. If the contaminant was not monitored last year, but was detected within the last 5 years, it will appear in the tables below along with the sample date.

Disinfection Byproducts

Contaminant (units)	Site	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2021)	Violation	Typical Source of Contaminant
HAA5 (ppb)	D3	60	60	23	12 - 32		No	By-product of drinking water chlorination
TTHM (ppb)	D3	80	0	56.7	25.4 - 62.8		No	By-product of drinking water chlorination
HAA5 (ppb)	D34	60	60	23	14 - 21		No	By-product of drinking water chlorination
TTHM (ppb)	D34	80	0	39.5	19.0 - 27.7		No	By-product of drinking water chlorination
HAA5 (ppb)	D37	60	60	23	12 - 29		No	By-product of drinking water chlorination
TTHM (ppb)	D37	80	0	41.5	26.6 - 60.5		No	By-product of drinking water chlorination
HAA5 (ppb)	D3A	60	60	4	17		No	By-product of drinking water chlorination
TTHM (ppb)	D3A	80	0	9.7	38.7		No	By-product of drinking water chlorination
HAA5 (ppb)	D1/D5	60	60	24	12 - 33		No	By-product of drinking water chlorination
TTHM (ppb)	D1/D5	80	0	56.9	27.4 - 63.7		No	By-product of drinking water chlorination

Inorganic Contaminants

Contaminant (units)	Site	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2021)	Violation	Typical Source of Contaminant
ARSENIC (ppb)		10	n/a	1	1		No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
BARIUM (ppm)		2	2	0.021	0.021		No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
FLUORIDE (ppm)		4	4	0.7	0.7		No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
NICKEL (ppb)		100		0.6000	0.6000		No	Nickel occurs naturally in soils, ground water and surface waters and is often used in electroplating, stainless steel and alloy products.
NITRATE (N03-N) (ppm)		10	10	0.33	0.33		No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
SODIUM (ppm)		n/a	n/a	12.00	12.00		No	n/a

Contaminant (units)	Action Level	MCLG	90th Percentile Level Found	# of Results	Sample Date (if prior to 2021)	Violation	Typical Source of Contaminant
COPPER (ppm)	AL=1.3	1.3	0.1800	0 of 30 results were above the action level.	9/17/2019	No	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives
LEAD (ppb)	AL=15	0	15.00	1 of 30 results were above the action level.	8/28/2019	No	Corrosion of household plumbing systems; Erosion of natural deposits

Radioactive Contaminants

Contaminant (units)	Site	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2021)	Violation	Typical Source of Contaminant
GROSS ALPHA, EXCL. R & U (pCi/l)		15	0	0.8	0.8	4/21/2020	No	Erosion of natural deposits
COMBINED URANIUM (ug/l)		30	0	0.3	0.3	4/21/2020	No	Erosion of natural deposits

Synthetic Organic Contaminants including Pesticides and Herbicides

Contaminant (units)	Site	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2021)	Violation	Typical Source of Contaminant
ATRAZINE (ppb)		3	3	0.0	0.0 - 0.0	8/25/2020	No	Runoff from herbicide used on row crops

Contaminants with a Health Advisory Level or a Secondary Maximum Contaminant Level

The following tables list contaminants which were detected in your water and that have either a Health Advisory Level (HAL) or a Secondary Maximum Contaminant Level (SMCL), or both. There are no violations for detections of contaminants that exceed Health Advisory Levels, Groundwater Standards or Secondary Maximum Contaminant Levels. Secondary Maximum Contaminant Levels are levels that do not present health concerns but may pose aesthetic problems such as objectionable taste, odor, or color. Health Advisory Levels are levels at which concentrations of the contaminant present a health risk.

Contaminant (units)	Site	SMCL (ppm)	HAL (ppm)	Level Found	Range	Sample Date (if prior to 2021)	Typical Source of Contaminant
CHLORIDE (ppm)		250		15.00	15.00	11/14/2017	Runoff/leaching from natural deposits, road salt, water softeners
SULFATE (ppm)		250		22.00	22.00		Runoff/leaching from natural deposits, industrial wastes

Unregulated Contaminants

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. EPA required us to participate in this monitoring.

Contaminant (units)	Level Found	Range	Sample Date (if prior to 2021)
METOLACHLOR (DUAL) (ppb)	0.01	0.00 - 0.01	8/25/2020

UCMR4 testing completed in 2020. No contaminants detected. Information available upon request.

Additional Health Information

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Two Rivers Waterworks is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Other Compliance

Monitoring Violations

Description	Contaminant	Sample	Compliance Period	Compliance Period
	Group	Location	Beginning	Ending
DBP Monitoring/Reporting	Dbp	Distribution System	6/5/2021	6/15/2021

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not your drinking water meets health standards. During the compliance period noted in the above table, we did not complete all monitoring or testing for the contaminant(s) noted, and therefore cannot be sure of the quality of your drinking water during that time.

Actions Taken

Northern Lake Service entered the incorrect dates for Two Rivers Waterworks sampling window. Northern Lake Service was contacted regarding their error and a sampling kit was shipped the next day. Two Rivers Waterworks contacted Northern Lake Service to review WDNR sampling protocol and discussed importance of accurate sampling dates & shipping of sample supply kits accordingly. All communications between Two Rivers Waterworks, Northern Lake Service, and WDNR representatives has been addressed.

Uncorrected Significant Deficiencies

Deficiency Description and Progress to Date	Date System Notified	Scheduled Correction Date
SD2 The overflow of the Northside ground storage reservoir does not terminate in a downward opening with a free air break 12 to 24-inches above a splash pad or rip rap as required in s. NR 811.64, Wis. Adm. Code. In addition, I'm concerned that the area surrounding the discharge pipe is above the outlet elevation of 608.25 and water could back up into the pipe if the storm sewer drain is clogged with debris.	10/9/2020	12/31/2022

Actions Taken

Per WNDR representatives an extension for corrective action was granted until 2026 when the reservoir will be scheduled for a drained inspection. The site will be monitored for safety until correction action is taken.

Violation of the Terms of a Variance, Exemption, or Administrative or Judicial Order

Failure to perform required Stage 2 Disinfection Byproduct Monitoring between 06/05/2021-06/15/2021. Note: correction action was taken immediately.

Noncompliance with Recordkeeping and Compliance Data

Reporting was not completed due to failure of Stage 2 Disinfection Byproduct Monitoring. Note: this was resolved as of 07/06/2021.

Turbidity Monitoring

In accordance with s. NR 810.29, Wisconsin Administrative Code, the treated surface water is monitored for turbidity to confirm that the filtered water is less than 0.1 NTU/0.3NTU. Turbidity is a measure of the cloudiness of water. We monitor for it because it is a good indicator of the effectiveness of our filtration system. During the year, the highest single entry point turbidity measurement was 0.049 NTU.